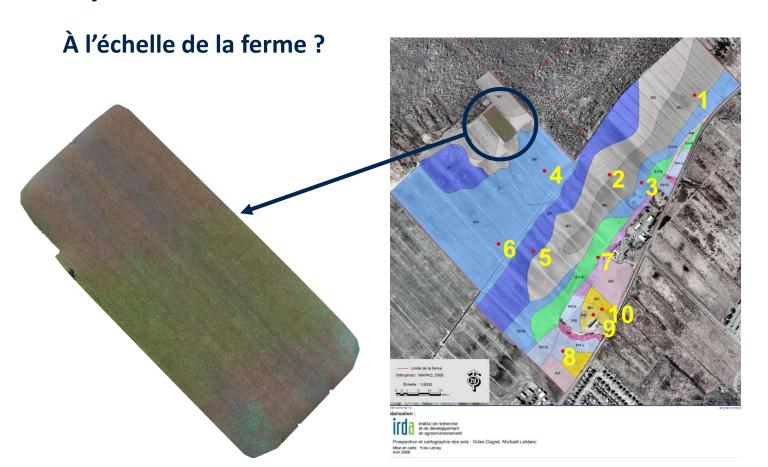
Développement d'algorithmes pour la détection des mauvaises herbes en agriculture

Élise Smedbol, Ph.D., chercheure en malherbologie

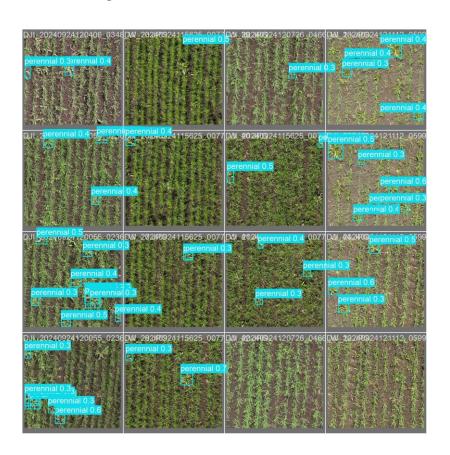
Pourquoi détecter des mauvaises herbes ?

 Gestion des mauvaises herbes spécifique au site (Site-specific weed management (SSWM))

Pourquoi détecter des mauvaises herbes ?



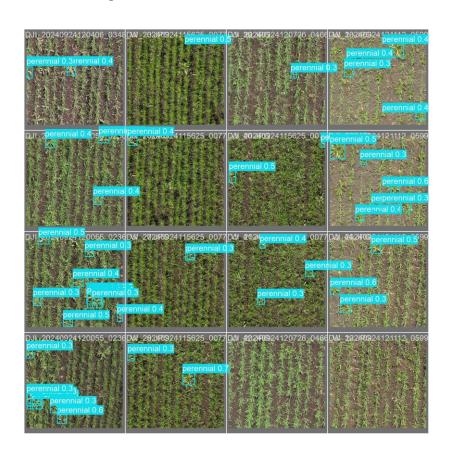
C'est quoi la détection des mauvaises herbes ?



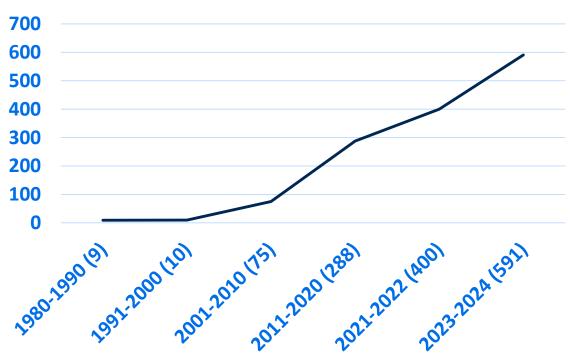
- Repérer
- Localiser

Coleman et al. 2022. Weed detection to weed recognition: reviewing 50 years of research to identify constraints and opportunities for large-scale cropping systems. Weed technology, 36: 741-757.

C'est quoi la détection des mauvaises herbes ?

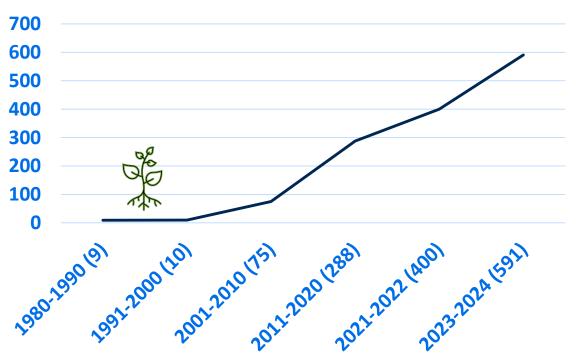


- Dépister
- Repérer
- Localiser
- Poser un diagnostic
- Intervenir



Mots-clés "weed detection"

1370 articles de revue

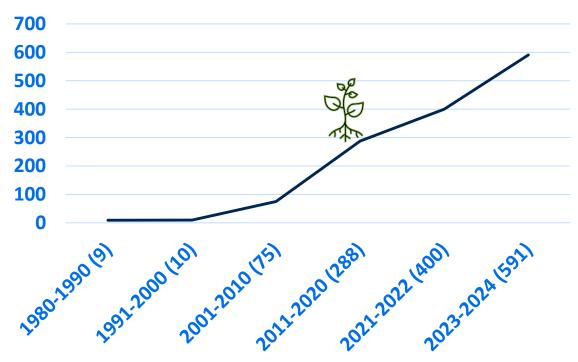


Premiers articles de revue dans les années 1980 à 2000 (~20)

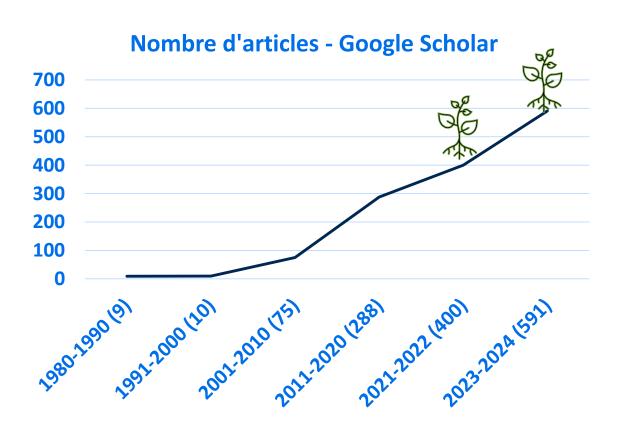
La pulvérisation localisée

If a system could be developed to detect the presence of weeds, it could be used to control a post-emergence herbicide sprayer, turning sections of the sprayer on or off depending on the amount of weeds present. Current research into non-tank-mix sprayers suggests the possibility of a sprayer dispensing a variety of chemicals. Such a system might carry several herbicides and apply them according to which weeds are present.

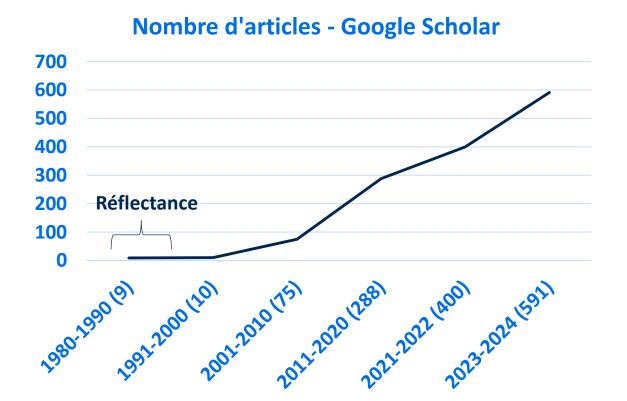
Shropshire, G. J., 1989. Weed detection in row crops using the red-near infrared reflectance ratio and frequency transforms of video images. Thèse de doctorat. Université du Nebraska.



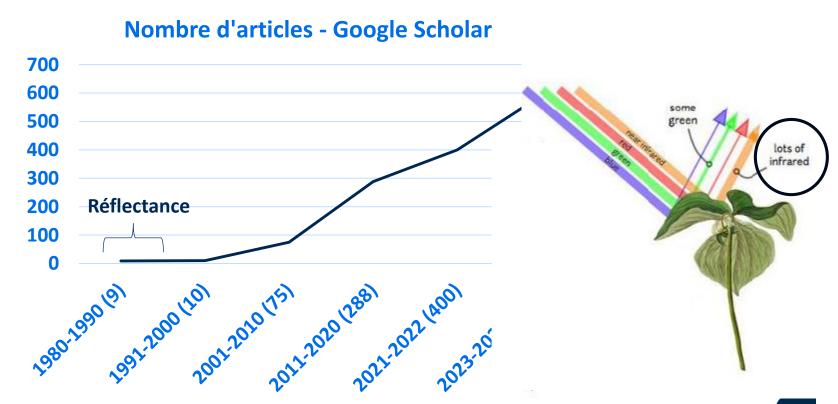
Un nombre plus important d'articles de revue à partir de 2010 (20 %)



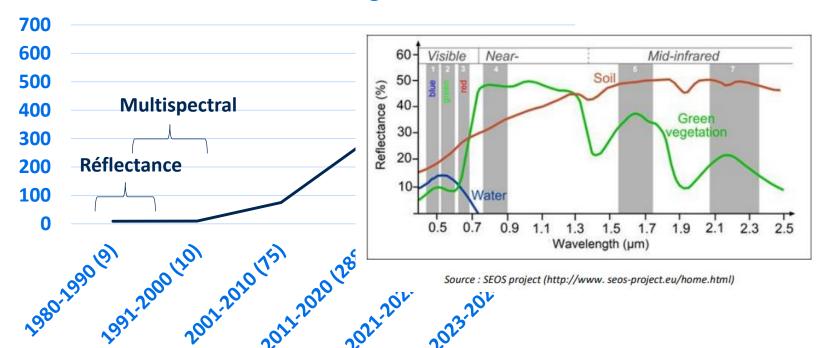
991 articles de revue de 2021 à 2024 (72 %)

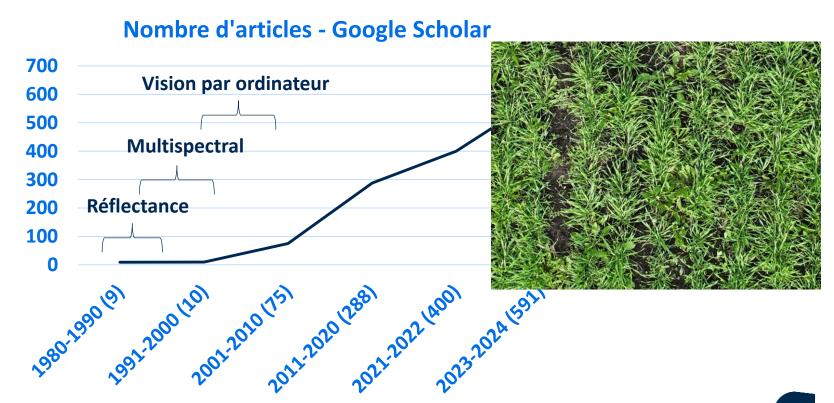


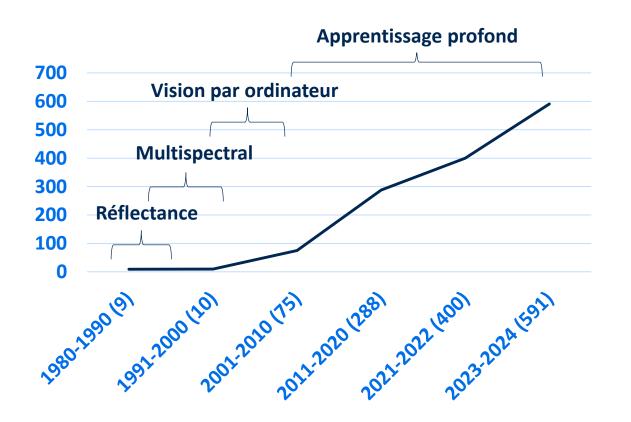
Coleman et al. 2022. Weed technology, 36: 741-757.



Nombre d'articles - Google Scholar







Hasan et al. 2021.
A survey of deep learning techniques for weed detection from images.
Computers and Electronics in Agriculture, 184, 106067.

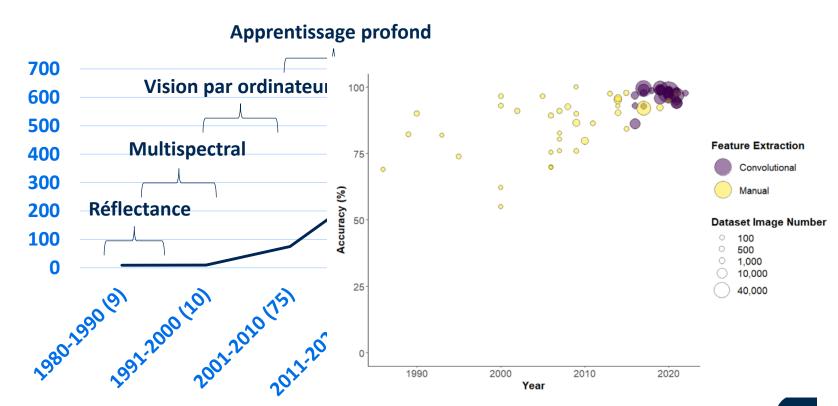


Table 4. Studies included in the systematic review.

Information	Sub-Information	Percentage of Studies (%)
Phenology stage of crop	Early-stage	21.00
	Vegetative	9.68
	Mature	9.68
	Flowering	8.07
	Seedling	27.42
	Heading	1.62
	Late-season	4.84
	Growing season	11.29
	In-season	6.45

Mohidem et al.
2021. How can
unmanned vehicles
be used for
detecting weeds in
agricultural fields?
Agriculture, 11,
1004

Table 4. Studies included in the systematic review.

Information	Sub-Information	Percentage of Studies (%)
Phenology stage of crop	Early-stage	21.00
	vegetative	9.00
	Mature	9.68
	Florida	0.07
	Seedling	27.42
	Heading	1.62
	Late-season	4.84
	Growing season	11.29
	In-season	6.45

Détection dans les les stades de croissance hâtifs

Table 4. Studies included in the systematic review.

Information	Sub-Information	Percentage of Studies (%
Phenology stage of crop	Early-stage	21.00
	Vegetative	9.68
	Mature	9.68
	Flowering	8.07
	Seedling	27.42
	Heading	1.62
	Late-season	4.84
	Growing season	11.29
	In-season	6.45
Reference data	Visual from images	84.76
	Visual labelling	3.81
	Digital records	2.86
	Field observations	2.86
	Visual and in situ polygons, points	4.76
	Landsat images	0.95

Les images sont les données de référence

Table 4. Studies included in the systematic review.

Information	Sub-Information	Percentage of Studies (%)
Phenology stage of crop	Early-stage	21.00
	Vegetative	9.68
	Mature	9.68
	Flowering	8.07
	Seedling	27.42
	Heading	1.62
	Late-season	4.84
	Growing season	11.29
	In-season	6.45
Reference data	Visual from images	84.76
	Visual labelling	3.81
	Digital records	2.86
	Field observations	2.86
	Visual and in situ polygons, points	4.76
	Landsat images	0.95
Type of sensor/camera	RGB	48.28
	Multispectral (broad band)	20.69
	Hyperspectral (narrow band)	4.83
	Thermal	1.38

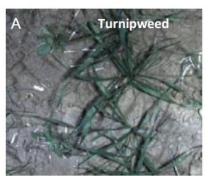
Les types de caméra les plus utilisés sont les caméra RGB (lumière visible)

Table 4. Studies included in the systematic review.

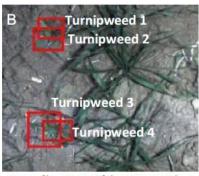
Information	Sub-Information	Percentage of Studies (%)
Phenology stage of crop	Early-stage	21.00
	Vegetative	9.68
	Mature	9.68
	Flowering	8.07
	Seedling	27.42
	Heading	1.62
	Late-season	4.84
	Growing season	11.29
	In-season	6.45
Reference data	Visual from images	84.76
	Visual labelling	3.81
	Digital records	2.86
	Field observations	2.86
	Visual and in situ polygons, points	4.76
	Landsat images	0.95
Type of sensor/camera	RGB	48.28
	Multispectral (broad band)	20.69
	Hyperspectral (narrow band)	4.83
	Thermal	1.38
Weed detection procedure/classification methods	Several pixel-based classifiers	4.20
	Maximum likelihood	6.29
	Spectral angle mapper (SAM)	0.70
	Vegetation index (pixel-based)	18.18
	OBIA	14.69
	Machine learning	47.90
	Fuzzy art map	0.70
	Unaumanicad mathad	e 20
	Supervised method	11.19
	minimum distance	2.10
	Perceptron	2.10
	AlexNet	0.70

L'apprentissage profond est utilisé pour faire de la détection d'objet ou de la classification de pixel

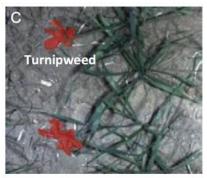
4 principaux types d'algorithmes pour l'identification des mauvaises herbes



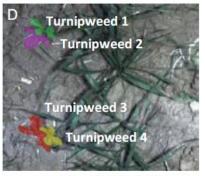
Whole-Image



Bounding Box Object Detection



Semantic Segmentation



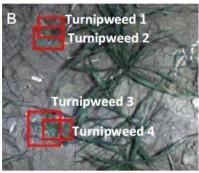
Instance Segmentation

Coleman et al. 2022. Weed technology, 36: 741-757.

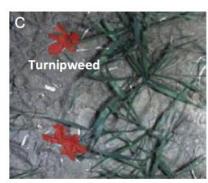
4 principaux types d'algorithmes pour l'identification des mauvaises herbes

Précision Rapidité

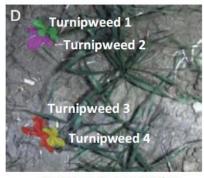
Whole-Image



Bounding Box Object Detection



Semantic Segmentation



Instance Segmentation

Coleman et al. 2022. Weed technology, 36: 741-757.

La pulvérisation localisée

If a system could be developed to detect the presence of wee could be used to control a post-emergence herbicide sprayer, Bounding Box Object Detection sections of the sprayer on or off depending on the amount of weeds present. Current research into non-tank-mix sprayers suggests the possibility of a sprayer dispensing a variety of chemicals. Such a system might carry several herbicides and apply them according to which weeds are present.

Shropshire, G. J., 1989. Weed detection in row crops using the red-near infrared reflectance ratio and frequency transforms of video images. Thèse de doctorat. Université du Nebraska.

Technologies disponibles - pulvérisation de précision

Reconnait certaines cultures (laitue, épinards, betteraves, haricots, oignon, chicorée) ou mauvaises herbes (pomme de terre volontaire, chardon, rumex)

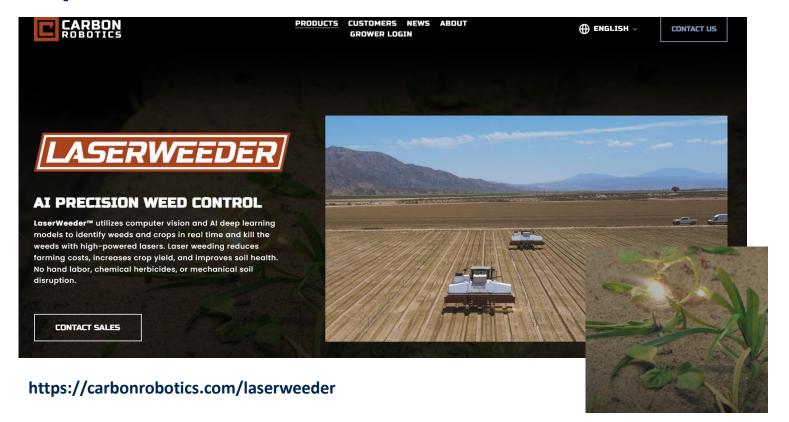
Technologies disponibles - pulvérisation de précision

See & Spray™ Ultimate

Utilisez la vision par ordinateur et l'apprentissage machine pour cibler les mauvaises herbes pulvérisées en saison pour le maïs, le soya et le coton – et utilisez moins d'herbicide par acre. Offert sur certains pulvérisateurs des séries 400 et 600.

Voir See & Spray Ultimate

Technologies disponibles – désherbage thermique de précision



Technologies disponibles – désherbage mécanique

de précision

ENVIRONNEMENT

Planète bleue, idées vertes

L'intelligence artificielle pour réduire l'utilisation d'herbicides

https://desherbex.com/

La jeune pousse Désherbex a mis au point un attelage de bras robotisés mus par un outil d'intelligence artificielle qui détecte les mauvaises herbes.

Détection au niveau du sol en temps réel

- Intégré à l'opération de désherbage = Solution clé en main
- Il doit y avoir un dépistage en amont

Différentes échelles pour l'acquisition des images

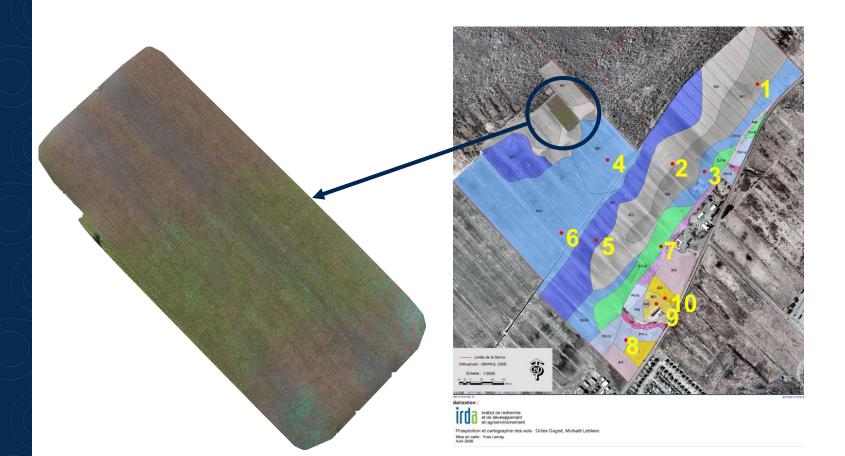
Au sol (ground-based or proximal sensing)

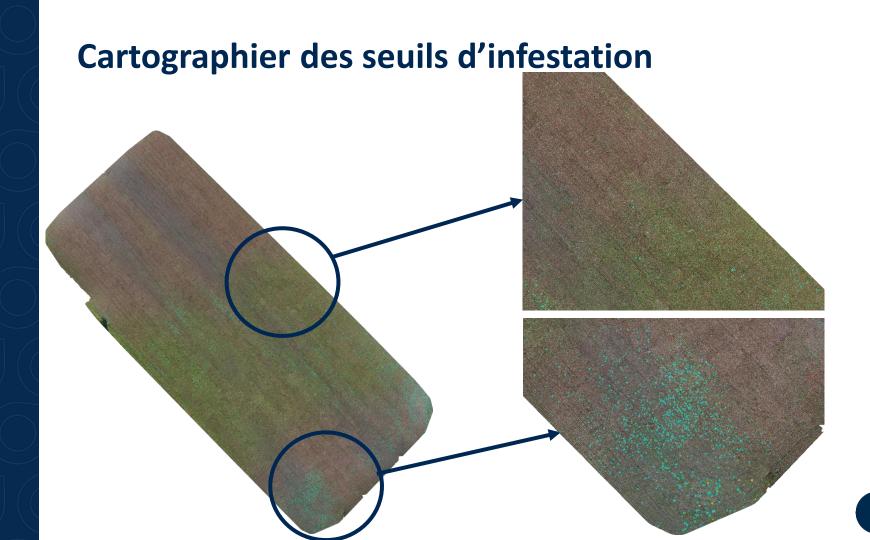
Télédétection (remote sensing)

Différentes échelles pour l'acquisition des images

Résolution

Cartographier des seuils d'infestation





Cartographier des seuils d'infestation

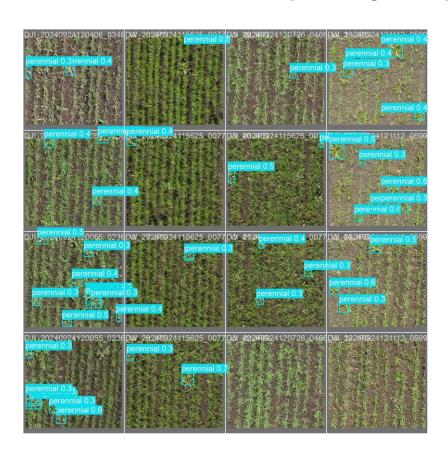
- Compromis résolution / temps
- Permet de faire la gestion des mauvaises herbes par site et le dépistage
- N'est pas intégré à l'opération de désherbage ≠ Solution clé en main

Cartographier des seuils d'infestation

- Gratuit et images disponibles
- Couvre une grande superficie
- Sentinel-2, Landsat,WorldView-3
- Faible résolution

Rist et al. 2019. Weed mapping using very high resolution satellite imagery and fully convolutional neural network. IEEE International Geoscience and remote sensing symposium, pp. 9784-9787.

Un flux de travail (workflow) complet



- Dépister
- Repérer
- Localiser
- Poser un diagnostic
- Intervenir

Un flux de travail (workflow) complet

Une intelligence artificielle multimodale accessible

Des systèmes multirobots hétérogènes ouverts, modulaires et accessibles

Valorisation de la chaine de valeur agricole

Collaborateurs

Professeur **Giovanni Beltrame**, Génie informatique, Polytechnique Montréal

Expertises : IA appliquée à la robotique, programmation d'essaims robotiques

Professeur **David St-Onge**, Génie mécanique, ÉTS *Expertises*: conception de systèmes ques, interaction personne-machine

Professeur **Valérie Gravel**, Agronomie, U. McGill

Expertise : Phytopathogènes, culture de la fraise

McGill

Expertise : lA appliquée en vision et ergonomie

Agriculture et Agriculture and Agroalimentaire Canada Agri-Food Canada

Dr. **Étienne Lord**, Agriculture Numérique Dr. **Marie-Josée Simard**, Phytoprotection

Merci pour votre attention!

Banque d'images en accès libre

- 36 Banques d'images de mauvaises herbes en libre accès;
- Grande précision de détection pour chaque ensemble de données;
- Manque de robustesse dans des conditions de champ changeantes selon les stades de croissance et entre les années;
- Difficulté à reconnaître les espèces de mauvaises herbes.

Deng et al. 2024. Weed database development: An updated survey of public weed datasets and cross-season weed detection adaptation. Ecological Informatics, 81: 102546.

Exemple de banque d'images en libre accès

WE3DS: An RGB-D image dataset for semantic segmentation in agriculture

GitHub - inkyusa/weedNet: weedNet: Dense semantic weed classification using multispectral images and MAV for smart farming

https://github.com/geezacoleman/OpenWeedLocator

GitHub - AlexOlsen/DeepWeeds: A Multiclass Weed Species Image Dataset for Deep Learning

https://github.com/XU-JIA-JUN/OpenWeed-GUI-PyQt5-YOLO

https://github.com/dataset-ninja/cotton-weed-det3