

TIPS FOR STORING COMPROMISED **POTATOES**

NORA OLSEN, UNIVERSITY OF IDAHO

GOALS OF STORAGE

- Maintain quality and minimize losses
 - Minimize carbohydrate loss respiration loss
 - Provide humidity to minimize evaporation loss
 - Provide oxygen (fresh air)
 - Remove carbon dioxide
 - Remove heat; maintain desired temperature

Others

- Dry out wet potatoes
- Prevent disease spread/breakdown
- Avoid condensation
- Deal with sub-optimal or compromised potatoes.
 - Consequences on sound potatoes?

Photos courtesy of Eugenia Banks

Idaho 2019

6/18/

MANAGING STORAGES WITH DISEASE

1. Airflow

- Maximize outside air
- Periodically close off ducts to good potatoes
- Duct (grain) fans
- Additional pile fans and heaters
 - Condensation management
 - Artificially increase return air with heaters – increase fresh air
 - Cut back on humidity*

2. Rank storages

- Prioritize and plan
- % of disease, logistics of storage conditions (split), building capabilities
- Consequences on sound potatoes
- Reasonable outcome by month
- Manage for best profit
- Be realistic!

Management decisions based upon...

Single-bay storage, one ventilation system

Management decisions based upon...

Single-bay storage, one ventilation system

Late blight in storage

- Know cultivar susceptibility
- Control in field
- Avoid warm pulp temperatures and wounding; wet conditions
- Eliminate when loading
- Remove field heat quickly; 10°C curing temperatures
- Immediate air
- High ventilation rates
- Lower holding temperatures
- Post harvest products

RISK WHEN HARVEST OUTSIDE IDEAL RANGE

EFFECT OF TEMPERATURE ON PINK-ROT DEVELOPMENT

Cultivar and storage temperature on leak

Jessica VanderZaag

Current industry recommendation:

- Harvest with pulp temperatures 7-18°C
- Remove field heat immediately
 - Remove heat, heat of respiration, provide oxygen, remove CO2
- Cure at 10 12.8°C for 2-3 weeks
- Followed by ramping to holding temperature (0.1 to 0.3°C/day)

If harvesting stopped at 18°C...

- Theoretically, if put in storage and no cooling air...
- Respiration:

$$C_6H_{12}O_6 + O_2 \longrightarrow CO_2 + H_2O + energy (heat)$$

- Heat of respiration = 0.5 BTU/cwt/hour
 - 10 times higher if wounded, immature, diseased, etc.

...18°C turns into 21°C after 12 hours

Frost example: How much liquid?

Russet Burbank 70ml

10% frozen = 148,000 gal. of water =

23

Ventilation

- Make sure there is adequate ventilation
 - Desired ΔT
 - Minimum for VFD calculate what % is in cfm/ton
 - e.g. if 12 cfm/ton storage and at 40% = 5 cfm/ton
 - e.g. if 22 cfm/ton storage and at 40% = 9 cfm/ton
 - Can get pockets of condensation; convection; hot spots
- Ducts aligned and sealed
- Deliver the air the system is designed to deliver

Monitor storage - depressions, temperature changes, odor

Soft rot

Decreased ability for soft rot to multiply as temperature falls

- Above 15.5°C = high level
- Below 15.5°C dramatic decrease in multiplication

Cool down ASAP

Time 1 hour

Late blight Dry rot

Soft rot

Silver scurf

100%

Time 2 hours

Additional options in storage

- Humidity reduction humidity sensors
- Ventilation
 - Early season maximize run time
 - Increase airflow
 - Supplemental fans (e.g. grain fan at entry to duct)
- Spot-treating with post-harvest product

Early-storage management study: impact on soft rot

- Less development of SOFT ROT from LATE-BLIGHT or pink-rot-infected tubers when
 - Reduce humidity to 80%RH

Reduce curing temperatures to 10°C

USE OF PHOSPHITE PRODUCTS IN

Post-harvest spray application volumes

Effect of post-harvest applications on late blight 1-ton bin trial

Late-blight or compromised-potato management in storage

- Integrated twopronged approach:
 - Deal with field-infected tubers
 - –Minimize spread and breakdown of healthy in storage

- Variety
- Exclusion
- Pulp temperatures
- Wounding
- Ventilation
- Temperature
- Humidity
- Post-harvest products

